
0AD-A
2 7 4 058

DTIC
SFLECTE

DEC231993

WEAPON SYSTEM INTEGRATION
FOR THE AFIT VIRTUAL

COCKPIT

THESIS
William Edward Gerhard, Jr.

Captain,USAF

AFIT/GCS/ENG/93-10

Approved for public release; distribution unlimited

93-30987

93 12 22 100

-7.

Acknowledgements

I am dedicating this thesis to my father. The i as I learned from him were

invaluable.

My thanks goes out to Lt Col Phil Amburn and his daughters who persuaded

him to stay and see this project through. I would also like to thank Lt Col David

Neyland, our sponsor at the Advanced Research Projects Agency.

I must acknowledge the contributions of the other graphics students, Matt

Erichsen, Andrea Kunz, Mark Snyder, Mike Gardner, Brian Soltz, Alain Jones, and

Kirk Wilson. I have never worked with a more capable group of people. I will fondly

remember the long hours we spent in the lab together; freezing, boiling, pouring over

lines of code, yelling at each other, and most important of all, laughing.

Most of all I would like to thank my wife, Nancy. Your support kept me going

when nothing else could. Thank you for always being there when I needed you.

William Edward Gerhard, Jr.
DOTIC

.INSPECTED

6 Accesion For

NTIS CRA&I
DTIC TAB
Unannounced 0
Justification

Distribution I

Availability Codes

Avail and i or
Dist Special

UhI

ii

Table of Contents

Page

Acknowledgements .. ii

List of Figures ... v

List of Tables ... vi

Abstract .. vii

I. Introduction 1

Overview 1

Problem Statement 4

Scope 5

Approach and Methodology 6

Hardware/Software 8

Thesis Overview 9

II. Background 10

Overview 10

Flight Simulators 10

Virtual Environments 16

Fidelity versus Rendering 19

Distributed Interactive Simulation 20

III. System Design 25

Overview 25

Performer 25

ObjectSim 29

iii

~-7

Par
Utilizing Other Processes 31

Improving Appearance and Adding Detail 34

Sound 38

IV. Weapon Controller 40

M-61A-1 CANNON 44

Mk-82, Mk-83, and Mk-84 Bombs 47

GBU-12, GBU-16, and GBU-10 Bombs 49

G BU-15 . 50

M issiles . 51

AIM -120 51

AIM -9 . 52

AIM -7 . 53

AGM -65 54

V. Head Up Display 55

Cues . 58

Viewing Transformation 59

VI. Results and Recommendations 62

Results . 62

Recommendations 65

Bibliography 67

V ita . 70

iv

List of Figures
Figure Page

1. Antoinette trainer 12

2. Electronic Analog Simulator 13

3. Flight Simulator with Computer Generated Image on a Dome. . .. 15

4. DIS Entity Coordinate System 21

5. Geocentric Cartesian Coordinate System 22

6. Nodes in the IRIS Performer Database 26

7. Performer Application/Cull/Draw Pipeline 28

8. ObjectSim Class Relations 30

9. Virtual Cockpit vl.0 Layout 34

10. Instrument Descriptions in Performer Tree 36

11. Actual F-15E Cockpit Layout 37

12. Virtual Cockpit Layout 38

13. Weapons Configuration File 41

14. Weapons loaded on the wings 43

15. Alignment of Body Axis During Flight 48

16. Virtual Cockpit Head Up Display 56

17. Side View of Virtual Cockpit Head Up Display 60

V

List of Tables
Table Page

1. Quality of Illusion 19

2. Application Process Execution Times (in ms) 33

3. Virtual Cockpit Munitions 40

4. Virtual Cockpit Capabilities - Past, Present, and Future 63

vi

AFIT/GCS/ENG/93-10

Abstract

The Air Force Institute of Technology is continuing research in the Virtual

Cockpit. The Virtual Cockpit makes use of high performance graphics workstations,

Virtual Environment technology, and Distributed Interactive Simulation network

protocols to create a flight simulator based on the capabilities of the McDonnell

Douglas F-15E Strike Eagle. The work presented in this thesis focuses on the design

and implementation issues for integrating a weapons delivery capability. Weapons

simulated include: RADAR and IR guided air-to-air missiles, gravity and precision

guided bombs, and a 20mm cannon. Virtual Environment displays used include:

color NTSC and monochrome high resolution helmet mounted displays employing a

Polhemus Fastrack sensor, and a display using five separate BARCO projectors simu-

lataneously. The Target graphics system was a four processor, SGI Onyx workstation

with a Reality Engine graphics pipeline. Graphics rendering was accomplished with

an AFIT developed object oriented simulation software package based on the SGI

Performer 1.2 application development environment.

vii

WEAPON SYSTEM INTEGRATION

FOR THE AFIT VIRTUAL

COCKPIT

L. Introduction

Overview

No general can accustom an army to war. Peacetime maneuvers are a
feeble substitute for the real thing; but even they can give an army an
advantage over others whose training is confined to routine, mechanical
drill. To plan maneuvers so that some of the elements of friction are
involved, which will train officers' judgment, common sense, and resolu-
tion is far more worthwhile than inexperienced people might think. It
is immensely important that no soldier, whatever his rank, should wait
for war to expose him to those aspects of active service that amaze and
confuse him when he first comes across them. If he has met them even
once before, they will begin to be familiar to him. - Carl von Clausewitz
(7-122)

Over 150 years ago General Carl von Clausewitz recognized the benefits of

training soldiers under realistic conditions. While no substitute for actual combat

experience exists, peacetime maneuvers involving large numbers of personnel, such as

REFORGER and Red Flag, provide the most realistic training possible. In addition

to training under battle field conditions, REFORGER exercises had the extra benefit

of training over the terrain on which a central European battle might actually have

occurred. However, the cost of moving troops to and from the maneuver and the

material expended make field exercises an expensive proposition.

As one method of reducing training costs, the United States Air Force uses

interactive simulators to augment pilot instruction by providing procedural training.

In procedural training, the student concentrates on how to do something, in this

case, how to fly an airplane (2:43). The use of flight simulators reduces training

costs by conserving fuel and reducing wear on airframes. Additional benefits are

increased safety and a decreased environmental impact. Nothing is damaged, except

a pilot's pride, if a simulator crashes.

The expense of traditional interactive simulators prevent them from being used

more widely. Although training in simulators is cheaper and safer than using actual

aircraft, the cost of an operational flight simulator can exceed $20 million (23:196)

(25:154). The highest fidelity interactive simulators require a large curved projection

screen to create the out-the-window cockpit view. The simulator projects computer

generated images onto the screen which typically has a radius of 20 feet (23:153).

These hardware requirements usually dictate dedicated buildings and support staff.

Due to these requirements, a dome-based simulator is not portable, and each simu-

lator runs scenarios for only a single type of weapon system.

Research into computer technology has the potential to overcome some of the

size and cost problems of traditional simulators and provide some additional benefits.

It may now be possible to replace the projection screen with Virtual Environment

(VE) technology. Used in this way, VE technologies could possibly reduce the size

and cost of a simulator. An additional advantage of new computer technology would

be electronically connecting several simulators together. This would allow pilots to

fly against each other and might be a way of providing some of the same training

benefits as field exercises.

The development of high speed computer networks provides a way of linking

several interactive simulators together. A simulator broadcasts its position, orien-

tation, and status on to the network. Long-haul networks provide communications

between simulators that may be located anywhere in the country. The personnel

training in the linked simulators interact in the same simulated environment. Ide-

ally, the views are consistent for everyone, and the actions of one person have a defi-

nite impact on the other simulators sharing the environment. The use of networked

2

simulators allow platoons, companies, and even battalions to fight force-on-force

engagements without leaving the garrison (20:577).

The long-haul network connections allow air defense, attack helicopter, and

close air support flight simulators to interact in the same environment. The battle-

field is no longer confined to a single simulator; it has become distributed over several

simulators. Simulators used in this manner provide many of the same benefits as the

large scale field exercises, without incurring the cost. The Army has pioneered the

networking of simulators in a project called SIMNET. Over 60 M-1 Abrams tank

simulators at Fort Knox are linked together allowing the crews of each simulator

to fight in the same simulation environment. Apache helicopter simulators at Fort

Rucker are also connected to SIMNET, enabling combined arms training.

The Advanced Research Project Agency (ARPA) also uses networked simula-

tors extensively in the WAR BREAKER project. The goal of the WAR BREAKER

project is to create an end-to-end system that detects, identifies, targets, and neu-

tralizes time-critical targets (22:2). The impetus behind WAR BREAKER was the

hunt for the SCUD missiles during Operation Desert Storm. Prior to Operation

Desert Storm, there was no doctrine on how to employ resources to eliminate time-

critical targets. Because of the quick pace of the war, the ad-hoc methods created

to destroy these targets were not fully tested or evaluated. As a way of evaluating

future doctrine, proposed hardware components, and training methods, ARPA is

creating a simulation environment. This simulation environment combines simula-

tors from all branches of the Armed Forces communicating over a network called the

Defense Simulation Internet. In addition to testing new tactics or proposed weapons,

this simulation environment serves as a prototype for future distributed interactive

simulations.

To facilitate the passing of information between a wider array of simulators,

the Institute for Simulation and Training has developed a proposed IEEE standard

protocol for Distributed Interactive Simulation or DIS (14). In a distributed sim-

3

ulation, there is no central computer arbitrating among the various players. Each

participant is responsible for keeping track of what is happening in a simulation, bet-

ter known as ground truth. The perception of events or other players is determined

by the receiving simulator. This architecture will theoretically allow a large number

of participants to interact in the same simulation.

The Air Force Institute of Technology is supporting the WAR BREAKER

project by creating a flight simulator based on McDonnell-Douglas F-15E, Strike

Eagle. This simulator is a multi-year project and is currently known as the AFIT

Virtual Cockpit. The Virtual Cockpit is designed to run on a Silicon Graphics

workstation and uses virtual environment technology to provide the out-the-window

view. The cost of the workstation and supporting equipment is approximately a

tenth of the cost of a traditional dome simulator (34:20). The Virtual Cockpit is

also capable of broadcasting and receiving information over a computer network. At

the end of last year the Virtual Cockpit adhered to the SIMNET protocol and could

fly with other simulators in a WAR BREAKER exercise.

Problem Statement

The work accomplished last year on the AFIT Virtual Cockpit laid a solid

foundation on which to build; however a lot of work remained to be done. To be useful

as an attack aircraft simulator, the Virtual Cockpit needed the ability to deliver a

weapons load on target. A weapons delivery capability required the weapons to be

visible, move, and interact with other objects in the simulation. Conversely, weapons

in the simulation had to be able to interact with the Virtual Cockpit. This required

the Virtual Cockpit to evaluate the effects of weapons detonation on its systems.

For the Virtual Cockpit to participate in future WAR BREAKER exercises, it must

be DIS v2.0 compliant. Students from previous years made the design decision to

ignore the curvature of the earth in all position and terrain calculations. DIS v2.0 no

longer allows this assumption to be made, and thus greatly increased the complexity

4

of many aspects of the simulation. Finally, the frame update rate of the version of

the Virtual Cockpit was less than seven frames per second. The frame rate of the

Virtual Cockpit must be increased to at least 15HZ. This is the minimum rate that

will allow users to interact with the system without causing over correction.

Scope

During my research, I explored ways to add the ability to deliver weapons to the

Virtual Cockpit, increase the simulation frame rate, and improve the appearance of

the Virtual Cockpit. My primary focus was on the creation of a Weapon Controllei'.

I intended the Weapon Controller to separate workings of the weapons from the

rest of the Virtual Cockpit. This separation allowed me to try different approaches

in creating the weapons while making only minimal changes to the existing code

structure.

The addition of the weapons required modifying several parts of the existing

version of the Virtual Cockpit. The first change was to the structure of the airplane

object to integrate the Weapon Controller. While this required only adding the call

to the Weapon Controller update function, the interaction of the network update

function, the RADAR update, the HUD update, and the Weapon Controller update

had to be analyzed to ensure these functions were working with the latest possible

information about the simulation. I also had to change the Head-Up Display (HUD)

to give proper targeting information to the pilot. Basic targeting information in-

cludes a Continuously Computed Impact Point (CCIP) for bomb delivery, a Target

Designation Box (TDB), and a gun sight. When released, each bullet, bomb, or

missile becomes an independent object in the overall simulation. This means each

weapon has its own geometric model and methods for movement. Additionally the

weapons must generate their own network messages.

Improving the simulation frame rate was a constant consideration in all Vir-

tual Cockpit development. The primary method of improving the frame rate con-

5

sisted of adapting the Virtual Cockpit to run within a simulation frame work called

ObjectSim (30). ObjectSim relies extensively on the IRIS Performer environment.

IRIS Performer is a software development environment that supports programmers

implementing high performance, multi-processing graphics applications on Silicon

Graphics products. It offers both high level facilities for visual simulation and vir-

tual reality tasks and an application-neutral high-performance hardware-oriented

graphics toolkit (28).

Improving the appearance of the Virtual Cockpit depended heavily on the

success of adapting the simulation to Performer and ObjectSim. The previous version

of the Virtual Cockpit had a significant problem with the frame rate (18:36). To

help improve the frame rate of the first version, most of the polygons describing

the F-15E model were removed, and the instrument panel became a simple texture

mapped polygon. After adapting the Virtual Cockpit to run under ObjectSim the

frame rate was high enough that more polygons were added to the Virtual Cockpit's

description. Increasing the number of polygons in the model increased the realism

but slowed down the frame rate.

Approach and Methodology

My first step in adding a weapons system to the Virtual Cockpit was to develop

an understanding of the Virtual Cockpit vl.0. Any modification to the current

system required a thorough understanding of the system and design decisions. The

first changes to the system consisted of modifying the Virtual Cockpit to run under

the ObjectSim framework. Next, I modified some of the instrumentation that already

existed in the Cockpit. Primarily, I needed to upgrade the HUD to show the different

weapons modes that are possible. While working with the Head-Up Display, I tried

a different approach to rendering it. This approach created the HUD with Silicon

Graphic's, Graphics Library line drawing function. Analysis of the Virtual Cockpit's

6

frame rate shvwed this method was faster and improved the overall performance of

the simulation.

I used an incremental approach for the addition of the Weapon Controller

object. At each phase of development I would add the minimum functionality needed

to test the next step. While I worked with the Weapon Controller, I decided to start

with a small subset of all of the different possible weapons. The techniques I learned

working with the subset of weapons I used later to add the full range of possible

munitions.

The 20mm cannon was the first weapon I added. The cannon rounds moved

along a simple ballistic path and checked each frame to see if they struck an object.

I then added the Mk-82 bomb delivery capability since they also follow a ballistic

path. The bombs were more complex than the cannon rounds for two reasons. First,

the Head-Up Display had to produce a more complex display showing the probable

point of impact. Second, I wanted the geometric models of external weapons like

bombs and missiles to be visible in the simulation while they were still on the air-

craft. Correctly placing the geometric models in the database hierarchy so that they

could be seen by the user required significant research into the Performer database

structure. The last weapon in the initial subset was the AIM-120 AMRAAM mis-

sile. Unlike the cannon rounds or bomb, missiles are powered during an initial boost

phase immediately after launch. After the boost phase, the missile will still be able

to maneuver but will have only a short period of time before it hits the ground.

The boost phase and maneuvering added additional complexity to the model. The

missiles also required interaction with the Virtual Cockpit's RADAR for target se-

lection and tracking. After these weapons were functional, I applied the techniques

I learned to add the remaining portion of the weapons.

Previous students designed this project to take full advantage of the Object Ori-

ented Design Methodology. This design approach has several characteristics which

models real world objects in software and helps the developers maintain the proper

7

device interfaces. In addition, Object Oriented Design allows developers to add new

objects one piece at a time. One important facet of this methodology is generaliza-

tion, also known as inheritance. Generalization is the ability for a subclass object to

inherit features of its superclass object and is sometimes known as an 'is-a' relation-

ship (26:39). An example of this relationship would be, "An F-15 is a jet aircraft".

The F-15 inherits features such as wings and jet engine from the superclass of jet

aircraft, yet has special features not on all jet aircraft. Previous students chose the

C++ computer language because it supports inheritance. Current versions of Ada

do not support inheritance.

Hardware/Software

All of the equipment and software required to implement the Virtual Cockpit

is available commercially. The equipment includes:

"* Silicon Graphics four processor Onyx Workstation with Reality Engine graphics

"* Polhemus "Looking Glass" Fiber-Optic Head Mounted Display

"* Thrust Master WCS Stick, Throttle, and Rudder Pedals

"* Polhemus Fastrack Position Reporting System

The software used for developing the Virtual Cockpit includes:

"* C++: An object-oriented programming language

"* MultiGen (Software Systems, Santa Clara, CA): A modeling tool for creating

3-D polygonal object descriptions

C++ is a high level programming language and is fairly platform independent.

When newer and faster computers become available, transferring this system to the

new computer will be straightforward.

8

-qIF I I --% V,

Theej Overvi-!w

The next chapter of my thesis provides additional background information.

Chapters HI, IV, and V discuss the design and implementation of my solution.

Chapter VI contains the results of my research.

9

IL Background

Overview

When the Virtual Cockpit is broken down into its component technologies, it is

a flight simulator, connected to a network, which uses virtual environment technology

to present visual information to the user. Although none of these technologies is new,

they have not been effectively combined in this type of application. This chapter

presents background information concerning flight simulators, virtual environments,

and distributed simulations.

Flight Simulators

Studies have shown that flight simulators are an efficient and effective means of

training pilots. While the simulators can not replace flight time, if used in the proper

manner, they can reduce the amount of time needed to master certain procedures.

Analysis of 22 studies conducted on flight simulators between 1967 and 1977 showed

that pilots trained in simulators required about half the flight time to master certain

skills as compared to pilots trained only in aircraft. Part of the reason for the decrease

in required flight time is that a simulator allows the student to practice a task more

times in a given period than actual aircraft (23:195). With the operating costs of

a simulator about eight percent of the actual aircraft, simulators can dramatically

reduce training costs (25:235). However, these savings can be realized only if the

simulator faithfully represents the performance of the actual aircraft.

Flight simulators have a long history and have been in existence almost as

long as airplanes. Their purpose has traditionally been to train future pilots in an

environment more benign than an actual airplane. Engineers have always employed

the most advanced technology available in their construction, with varying degrees of

success. The following paragraphs on flight simulators are summarized from Chapter

2 of Flight Simulation by J.M. Rolfe.

10

A faithful simulation of an aircraft in flight requires three elements (25:17):

I. A complete model, preferably expressed mathematically, of the response of the

aircraft to all inputs from the pilot and from the environment.

2. A means of solving these equations in real-time.

3. A means of presenting the output of this solution to the pilot by means of

mechanical, visual and aural responses.

Engineers have been trying to provide these three elements using various meth-

ods since 1910. These methods have been constantly evolving as technology in-

creases. I have grouped the simulators into seven different generations depending

upon the technology used to build them. These generations and their approximate

time frames are:

1. Early simulators using actual aircraft (1903-1919)

2. Mechanical simulators with motion (1910-1930)

3. Fixed-based, mechanical analog (1928-1945)

4. Fixed-based, electrical analog (1941-1960)

5. Fixed-based, digital computers with no visual system (1950-1957)

6. Full Motion, digital computers with closed circuit television (1955-1978)

7. Full Motion, digital computers with computer generated images on projection

screens (1974-present)

The first generation simulators were typically actual aircraft mounted on a

universal joint. The wind blowing over the wings generated lift. The lift from the

wings brought the body cf ¼ simulator upright on top of the universal joint. It

was then up to the student to provide the control inputs to keep the simulator in

equilibrium. During this generation the first requirement of a faithful simulation

was poorly understood. Lack of a through understanding of aerodynamics accounts

11

Figure 1. Antoinette trainer
(25:16)

for the many different aircraft designs, and the number of designs that failed. The

second and third requirements were provided by an actual aircraft and were therefore

very realistic. This type of simulator was effective, but it did have its drawbacks.

These simulators were large, the size of the actual aircraft. They required a steady

source of wind to generate lift. Finally, because they were mounted on the ground,

they could not simulate steep dives or banks. (25:15)

The next two generations of simulators tried using various mechanical means

of providing the first two required elements of an effective flight simulator. The

mechanical simulators, such as the Antoinette trainer shown in Figure 1, were also

mounted on universal joints. The earliest versions had the instructor pilot providing

the motion cues to the simulator and the student trying to correct the motion using

controls connected to wires and pulleys in the base. The training value for these

devices was low because the motion of the simulator was not based on any true

aircraft model, and the student received immediate response from control inputs.

(25:16)

By 1920 aeronautical engineers could satisfy the first requirement of a faithful

flight simulation and produce a mathematical model of an aircraft in flight. However,

no known method could solve the equations of motion in real time. Instead, the

engineers created mechanical analog simulators that no longer tried to imitate the

motion of aircraft, but concentrated on instrumentation flight. These simulators

12

Figure 2. Electronic Analog Simulator
(25:30)

employed mechanical and pneumatic techniques to change the instrument readings

based upon the pilot's input. The instrument responses were based on an empirical

model instead of a mathematical model of the specific aircraft. Engineers adjusted

the simulator's cams, gears, and pneumatic pumps until the instrument readouts

were similar to an actual aircraft in flight. (25:19-27)

The advancement of electronics during World War II brought about the first

electronic, analog computers that could satisfy both the first and second requirement

of a faithful flight simulation. The Curtiss-Wright Z-1, shown in Figure 2, was an

example of this type of simulator. These analog computers could solve the basic

equations of motion for an aircraft in real time. Instead of doing numeric calcula-

tions, the electronic analog computer performs a direct simulation of the physical

device. Each section of the computer models a particular portion of the simulated

aircraft. Unlike a digital computer which manipulates the discrete states of electronic

switches, the analog computer changes the value of a continuous signal, usually elec-

trical voltages that vary with time (17:2). The voltages produced by the analog

computer reflect information about the state of that portion of the aircraft being

modeled. For example, the analog computer representing the wings produces a sig-

nal that would be processed to determine the amount of lift being generated. If the

13

lift is greater than the aircraft's weight then the signal going to the altimeter gauge

would increase, reflecting a gain of altitude.

Due to the size and weight of the vacuum tubes and wires, these simulators

did not provide any motion cues. However, for the first time the values shown on

the instruments were based on the aerodynamics of the simulated aircraft. The elec-

tronic nature of these simulators also enabled the instructor to modify the simulated

conditions easily and precisely, allowing the training crew to practice emergency pro-

cedures. The success of the electronic analog simulator led to increased requirements

for greater accuracy. The accuracy of the electronic analog simulators was increased

by adding more analog circuitry, but this approach soon reached the point of dimin-

ishing returns. The small cumulative errors inherently present in the analog circuits

multiplied as the amount of circuitry increased. Such errors could be introduced by

an amplifier boosting a signal too much or a variation in the conductivity of the

copper wires. These errors canceled the gains in accuracy. The additional number of

components also decreased the mean time between failure rate for these simulators.

(25:32)

The introduction of digital electronics solved the accuracy problem presented

by analog circuitry. Instead of the analog computer's continuous signals, the digital

computer used discrete signals. These discrete signals can not be skewed by small

variations in the hardware. There were several digital flight simulation projects

started in the early 1950's. These projects, like the Navy's Universal Digital Oper-

ational Flight Trainer, used computers specially designed to solve aircraft equations

of motion. However, as general purpose computers became faster and more capable,

the use of the specially designed computers declined. The digital computer is still

the basis of a modern flight simulator and as digital computer technology advances,

flight simulators will also advance. (25:33)

After the digital computer fulfilled the first two requirements of using a mathe-

matical model of aircraft characteristics to solve the equations of motion in real time,

14

""- 77-
7F,

law POW Sk/ \

Figure 3. Flight Simulator with Computer Generated Image on a Dome
(25:150)

the third requirement of presenting output to the user received more attention. One

advancement was the reinvention of full-motion simulators, which create accelera-

tions in six degrees of freedom. The presentation of realistic images has proven to be

more difficult. For over 25 years closed circuit television cameras moving over a scale

model terrain board proved to be one of the most successful methods. However, the

terrain board required substantial logistical support. First, the terrain model boards

were typically 40 feet long and 15 feet high. The large size of the boards dictated

a large building and made training over different terrains impractical due to the

necessity of substituting boards. The television cameras required servo motors and

a large number of bright lights. The heat generated by the lights drove up the cost

of air conditioning the large building. (25:131)

By 1980 there were over 300 flight simulators that used computer generated

images projected onto spherical screens for the visual system. These systems use

conventional 3D computer graphic principles to generate the out-the-window view

(Figure 3). The Main Field of View (FOV) projector displays a low detail image

of the sky, horizon, and ground onto the screen. The low detail image provides the

pilot with altitude and orientation cues. The Inset FOV projector displays a smaller,

more detailed image of objects of interest, such as other aircraft. The position of the

15

simulated aircraft and other objects determine the image projected on the screen.

The detail of the image is directly linked to the computational power of the computer

generating the image (25:131). The development of virtual reality technology may

provide a replacement for the large projection screens, thus making the simulators

less expensive and smaller.

Virtual Environments

In a paper presented in 1965 to the International Federation of Information

Processing Societies, Ivan Sutherland proposed the concept of the Ultimate Display.

Dr. Sutherland's idea was that a computer display should interact with as many

of the user's senses as possible. Currently a computer passes most information to a

user through the sense of sight. The user sees what is happening on the computer

screen. High quality digital audio technology brings the user's sense of hearing into

play, but it is used much less frequently. Dr. Sutherland proposed that other senses

could be included, and a person using the Ultimate Display would not be able to

distinguish the computer generated environment from the physical world (32:508).

Computer researchers have used this description of the Ultimate Display as

the inspiration for the development of virtual environments. Virtual environments

have potential uses in many different areas. People from many diverse fields could

use virtual environment simulations to sharpen their skills. Surgeons could practice

before performing difficult operations or fighter pilots could practice missions before

flying. Scientific visualization and the entertainment industry also provide incentives

for the development of virtual environments (1:168). Twenty-eight years after the

initial concept, the technology to implement the Ultimate Display still does not exist.

However, impressive advances in the areas of computer workstations, head-mounted

displays, and tracking equipment are bringing virtual environments closer to reality.

The computer is the engine on which all virtual environment development de-

pends. The cost of special workstations with optimized hardware for drawing images

16

is decreasing at a rate of 50% per year (1:168). As the performance to price ratio in-

creases, the newer, less expensive computers create more realistic images. However,

one drawback to these new computers for virtual environment applications concerns

latency. Latency is the delay between where the user is currently looking and the

corresponding change in the display created by the computer. The architecture of

workstations used to generate graphic images are 'pipelined'. This pipeline is similar

to a car assembly line, except a computer image is being built, and is a cause of some

latency. Different portions of the image description have different calculations being

performed on them at the same time. Normally this reduces the amount of time it

takes to draw the image. However, when the image description changes rapidly all of

the old image must be cleaned out of the pipeline before the new image description

is processed. The delay needed to clean out the pipeline is a significant source of

latency, and researchers are investigating various ways of reducing it (1:168).

Head-mounted displays are another area of much research in virtual environ-

ments. The concept behind a head-mounted display is to present a computer gener-

ated, three-dimensional image to the user in such a way that the user feels immersed

in the image. Researchers are currently focusing on the creation of light weight,

maneuverable head sets that put the image directly in front of the user's eyes. The

current generation of head-mounted displays primarily use color liquid crystal dis-

plays, which typically have a resolution of 200 pixels high and 300 pixel across

(1:169). A different approach being researched at the Air Force Human Resources

Laboratory uses four light-valve projectors to transmit each eye's image through

fiber optic cables to the head-mounted display. The fiber optic cables project the

images on to small mirrors in front of the user's eyes. The field of view on this display

is 135 degrees and a resolution of 2-3 arc minutes for each pixel (13:262). The Air

Force Institute of Technology's graphics lab currently uses a head-mounted display

based on a similar approach. The Advanced Research Project Agency is sponsoring

the development of higher resolution displays. These displays will use liquid crystal

17

display systems with a monochrome resolution of 1280 pixels by 1024 pixels. The

color resolution of these displays will be less than the monochrome resolution. The

development of the new displays should be completed in the twvo years (1:169).

In addition to projecting the computer generated image for the user to see, the

computer creating the virtual environment must know where the user is looking. This

type of input to the computer requires specialized hardware to track the movement of

the user's head. There are several systems commercially available; the most common

systems use magnetic fields emitted from a small antenna in a fixed position. A device

placed on a head-mounted display detects the magnetic fields. Any movement by

the user causes a change in the field detected by the receiving antenna (1:167). The

tracker interprets the changes in field strength as movement and reports the new

position and orientation of the user's head to the computer.

These magnetic systems need improvement. Due to the very nature of the

magnetic fields, these trackers are sensitive to metal objects in the area. The metal

objects distort the shape of the magnetic fields and cause errors in the reported

position (6:46). The magnetic trackers also have a very limited effective range,

usually less than one meter (1:167).

Current digital audio technology is ready for large scale integration into virtual

environments. The challenge is to incorporate sound in the virtual environment so

that it is believable. The two main categories of devices for computer generated

sound consist of samplers and synthesizers. Samplers can replay almost any pre-

recorded sound. However, samplers require a large amount of storage media for the

pre-recorded sound and have problems reproducing sounds in real time. Synthesizers

rely on analog or digital sound generation techniques. Synthesizers are more limited

in the sounds they can produce, but are more adaptable to real-time manipulations.

Once the sound description is created, the computer must process the descrip-

tion so that the sound fits into the virtual environment. The sound emitted by an

approaching object in the virtual environment should have the appropriate Doppler

18

shift, or the sound coming from an object behind the user should sound as if it is

behind him or her. Students at the Air Force Institute of Technology are conducting

research in the area of audio cue generation. Current work includes the use of a Pol-

hemus IsoTracker to monitor the user's head position and an audio localization cue

synthesizer. The synthesizer uses information about the user's position to modify

the audio cue to give it the proper 3-D effect (27:459). This type of processing is very

intensive and requires approximately 300 million instructions per second to generate

the proper sounds. Research needs to be conducted on models of perception to make

sure useful and proper acoustical cues are being generated (1:170).

Fidelity versus Rendering

One of the fundamental objectives of virtual environments is to create an il-

lusion of immersion in the environment for the user. For this sense of immersion to

work, a view of the scene reflecting the position and orientation of the user's head

must be presented to the user. The head-mounted display and magnetic tracking

system previously described fulfill these requirements. However, the speed at which

the computer can read the tracking device and render the image for the display is

critical for the illusicn. Steve Bryson demonstrates the relationship between image

update rate and the quality of the illusion (Table 1).

Upom FW in am*msofswid

Lou IMnS feb = 0@1@11. (Lo~s Doa..ao al vi S Vca)

Be86een 5 Wo 10 woo Poirty.

BeSweMn b0nd 15 WaIl we v

oetween 15 eN 25 We acingy.

Table 1. Quality of Illusion
(5:1.3.3)

19

For a simulation to work effectively, it requires a minimum amount of fidelity.

This fidelity represents how close an object's actions and appearance correspond to

the same object in the real world. Increasing the accuracy of an object's appearance

requires adding more polygons to the description and possibly texture mapping the

surface. Accurately portraying how an object moves requires detailed equations of

motion and numerous calculations. Adding polygons and texture maps, and solving

detailed equations to enhance fidelity requires more CPU time and slows down the

simulation. Obviously anyone who tries to develop a graphic simulation must make

some tradeoffs between the fidelity of the simulation and the rendering speed of the

graphics.

Distributed Interactive Simulation

When we had gone so far across the ice
that it pleased my Guide to show me the foul creature
which once had worn the grace of Paradise,
he made me stop, and, stepping aside, he said:

Now see the face of DIS! This is the
place where you must arm your soul against all dread.

Do not ask, Reader, how my blood ran cold
and my voice choked up with fear. I cannot write it:
this is a terror that cannot be told. - Dante (3:283)

For a simulation to be truly useful and interesting, a person must not only

interact with objects in the virtual environment but also with other people in the

same environment. This interaction requires different simulators to communicate

with each other via a computer network. The Advanced Research Project Agency is

sponsoring the development of the Distributed Interactive Simulation (DIS) protocol

to facilitate interaction between simulators.

DIS is a time and space coherent synthetic representation of world environ-

ments designed for linking the interactive, free play activities of people in opera-

tional exercises. The synthetic environment is created through real-time exchange of

20

x

z

Figure 4. DIS Entity Coordinate System
(11)

data units between distributed, computationally autonomous simulation applications

in the form of simulations, simulators, and instrumented equipment interconnected

through standard computer communicative services. The computational simulation

entities may be present in one location or may be distributed geographically (14:1).

The DIS protocol defines the simulation environment, communications, and

fidelity requirements. Coordinate system definitions are a fundamental part of the

simulation environment. DIS version 2.0 deftnes two separate coordinate systems,

one for all the entities in the simulation, and one for the simulated world. The entity

coordinate system gives a standard orientation for all the geometric models in the

simulation. The entity coordinate system, shown in Figure 4, uses a right-handed

Cartesian coordinate system whose origin is the center of the entity's bounding

volume. The positive X axis goes out the front of entity, the positive Y axis out

the right side, and the positive Z axis points down. The basic unit of measurement

21

01/14/94 09:20 0513 476 4055 AFIT/VENG WPAlS OW0/07jIF

2 NMl

Figure 5. Geocentric Cartesian Coordinate System

is the meter (14:5). Engineers commonly use this coordinate system when working

with aircraft aerodynamic forces (25:50).

The World Coordinate System is also a right-handed, geocentric, Cartesian

coordinate system, shown in Figure 5. Its origin is the center of the earth with the

positive X axis passing through the equator at 0 degrees longitude and the positive

Z axis passing through the North Pole. The basic unit of measurement is the meter,

and the World Geodetic System 1984 defines the size and shape of the earth (14:5).

This coordinate system has several advantages such as the inclusion of satellites (16)

and allowing simulations to take place anywhere in the world. It does present several

challenges also. Among the challenges are adapting aircraft equations of motion to

compensate for the curvature of the earth and determining which direction is down
in the simulation.

In a distributed simulation, each user is hosted on his or her own computer. In

addition to hosting a user, each computer must also keep track of the location of the

other users. The computer uses a prediction model called dead reckoning to prevent

the network from being overloaded (4:157). Dead reckoning uses an approximation

of a, user's position and orientation to display the information in the simulation.

22

144i."T 71 POOR~ -

A host machine keeps the dead reckoned position of everyone in the simulation in

addition to the actual position of the local user. When the local user's dead reckoned

position differs too greatly from his actual position or a specified amount of time has

elapsed since the last update, the host computer transmits an updated position over

the network.

The basic means of communication in a distributed interactive simulation is a

Protocol Data Unit or PDU. In DIS version 2.0 there are 27 separate types of PDUs

(14:22). The three most important PDU's are the Entity State PDU, Fire PDU, and

Detonation PDU and are the only ones the Virtual Cockpit broadcasts. The Entity

State PDU contains information about an object's identification, position, and oper-

ating condition. The Fire PDU is issued when a simulator releases a weapon of any

type. The basic information in the Fire PDU is the issuing simulator identification,

the weapon type, where it was released, and the target identification. A Detona-

tion PDU always follows a Fire PDU. The Detonation PDU contains information on

where the weapon detonated and whether or not the weapon hit its target.

Each local simulator on a DIS network determines if a weapon launched by its

user hits anything in the simulation since the decision on when and where to release

a weapon was made by the local simulator's user based on information the local

simulator had at the time (14:28). This fact may seem unusual since an object may

not have the same position on the local simulator as it has on the other simulators

in the network. The difference in an object's position is caused by errors in dead

reckoning and the time lag caused by sending, receiving, and interpreting Entity

Statc PDUs. The damage inflicted on the target is left for the target's simulator to

evaluate, and it is made known by broadcasting its condition (undamaged, slightly

damaged, etc.) in an Entity State PDU.

23

@1/14/64 @6: 21 0613 47• 4055 IMTAM WA1 "i 4 t

III. System Deei
Ouervep

The next three chapters discuss how I met the goals ddned in the Scps

action of Chapter I. This chapter provide som addlfioaa backgromnd inloimation

on Iris Peormer and ObjectSim and how they influenced the deu* of the Virtual

Cockpit.

Performer

The Virtual Cockpit crtes msies of computer geated imae shown to a

user in rapid succmion. The ivtages need to be drawn fast enough that the use

interprets them as smooth motion. Therefore the Virtual Coc•"- 's most basic, fun-

damental task is lighting individual pixels as fast as possible. Hopefully, the us

interprets the pattern formed by the pixels as a flight simulation. A pixel's color is

dependent on a large number of mathematical equations that are absractly repro.

sented as polygons. My task was to work with the algorithms that move and orient

the polygons. The students in the graphics sequence chose the Iris Performer soft-

ware to convert the polygon position information into pixel shading information for

several different applications. Iris Performer is a software development environment

consisting of several function libraries written in C. It supports the implementa-

tion of high periormance, multi-proceasing graphics applications on Silicon Graphics

products. The Performer Libraries offer high-level facilities, such as intersection tests

and view parameter definition, for visual simulation and virtual reality tasks. (19)

One of tb• high-level Performer facilities organizes the polygon descriptions

into a hierarchi-al database. This database is contained in a standard tree structure

(Figure 6). The polygon descriptions are the leaf nodes at the bottom of the database

and can be created with a variety of visual database modelers such as WaveFront

and MultiGen. The database's parent nodes are data structures that contain 4x4

24

4.

Figure 6. Nodes it) the MiIS Performer Database

matrices used for transformations. To draw a scene, Performer traverses the tree-

structured database and applies the matrix transformation$ in a parent node to its

children nodes. By the time Performer traverses the database down to a polygon

description, it has processed all of the necessary matrix tranormations to place the

polygon in the scene. The faster the computer can process the matrix transforma-

tions, determine which polygons are visible to the user, and draw them on the screen,

the smoother the motion in the simulation. One way of improving the drawing speed

is to use more than one processor.

A graphics application using the Performer Libraries can crat up to three

processe which are used to create a visual simulation. The processes are called the

Application process, the Cull process, and the Draw process. The Application pro-

cess is initialze first and contains the main loop for the simulation. The Application

process in the Virtual Cockpit is responsible for several tasks including:

"• Getting user inputs from the Polhemus Fastrack.

"• Moving the polygon description of the aircraft based on user inputs.

25

01/14/04 00:22 0313 476 4055 AFIT/ENG WPAFS "6o8/lI1

Sun no ms 0 Pamel Fsm2 PmA 3 Fzrm4

Figure 7. Performer Application/Cull/Draw Pipeline
(19:7.15)

* Moving the polygon description of the released weapons.

e Determining the effect of weapon detonations on local objects.

* Determining if objects are illuminated by the RADAR.

a Calculating the cues for the HUD and RADAR.

The Cull process traverses the Performer database and determines which poly-

gons are visible in the user's current view. It puts the polygons that are visible into

a data structure called the draw list. The Draw process then uses the polygons in

the draw list to determine the color of the individual pixels.

The Application, Cull, and Draw processes form an assembly line, with each

process working on information for a different frame (Figure 7). The Application

process gets the user inputs and changes the transformation matrices in the Per-

former Database. After the Application process finishes, the Cull process creates

the draw list from a copy of the Performer Database. While the Cull process is cre-

ating the draw list, the Application process starts modifying the Performer Database

for the next frame. After the Cull finishes the draw list, the Draw process begins to

draw the scene. While the Draw process is working on Frame N, the Cull process

is working on a draw list for Frame N+1, and the Application process is working

on Frame N+2. This pipeline minimizes the time the Draw process must wait for a

draw list.

26

The speed of the Draw process is usually the limiting factor of the frame

update rate. After rendering the polygons, the Draw process must also render the

HUD and RADAR displays. The information required to render the BUD and the

RADAR is not contained in the Performer database; instead they are rendered using

SGI Graphics Library function calls. The HUD and the RADAR must be rendered

by the Draw process because the design of the SGI hardware requires a graphics

pipeline to be controlled by only one processor at a time. To reduce the number of

calculations the Draw process must execute, as many of the calculations as possible

needed to draw the HUD and RADAR cues are done in the Application process. This

information is then passed to the Draw process through the use of shared memory

and locks.

Shared memory is simply memory that can be accessed by multiple processors.

The processors in a Silicon Graphics Onyx workstation operate independently of each

other, and could cause conflicts by attempting to access the same shared memory

simultaneously. One example of the possible conflict is the Application process

writing the values of the HUD cues to the shared memory while the Draw process

is trying to read them. The Application process may have written out the first two

bytes of a float variable when the Draw process tries to read it. The value read by

the Draw process would not be correct. Therefore data structures in shared memory

must be protected against being accessed by more than one processor at a time.

The required protection is available through the SGI operating system support in

the form of locks.

Locks are a special type of variable that processes use to protect critical sections

of code. Locks are declared in shared memory and cannot be accessed by more than

one process at a time. When a process reaches a critical section of code, typically

reading or writing to shared memory, it tries to set a specific lock. If the process is

successful in setting the lock, it goes ahead and executes the critical section of code.

If the process is not successful because some other process has previously set the

27

@1/14/94 09:34 V$13 470 4015 AFZT/3I@ WPAA

Figure SUWObjc~N Cls Rlti
(30)MNO

loic te nsccsfu pocssmutwat ntl hecntolin pocs rsesohelok
In m expriene, oly te coe t Naota"l oyit roto hrdmmr

strctresholdbeinideth lck.Ths esgn inmieswaii"tm o te

Objectvim

funcionlit ir a oreabsrac for. Abet it. hlaen leelations c~ sageei

viulokth uscesiflaio thtareeopers cutait usei ase acai onrollinspreificesimetios thelok

Inbmyexperinclses sownl the Figue 8o represent coyitheo obuetso yiall foured mnmary

vstualur simulaton Tbe PnsayeCass the kw-keThcs desof thnmies entities that fortherac

inoaesieulatin. esrsthei basck chancteist icsb execuste ofe apstion sXharZ) andan

oruntationa(beadingor pisratc roll).Th Atirps obghect andvall theweaponis in tgenei

Virtual Cockpit simulation are Player objects. Each Player object also has a pointer

to an object of the Fit -Model class. The FIC..Model clans manages the polygon models

28

for a Player object. It also allows several Player objects to share one instance of a

polygon model. The model is placed in different locations in the simulation by having

dierent transformations in the pfDCS nodes before getting down to the geometry

node. One example of a single geometry description is shown in Figure 6. Each

bomb has its own location on the plane (Bomb Location) and a Dynamic Coordinate

System (Bomb RotDCS) for moving independently in the scene. However, they all

share the same polygon description for a bomb.

The View class controls what the user sees in the simulation and contains

several attributes useful for defining a view into the simulation. These attributes

include a position (XY,Z), a direction (heading, pitch, roll), and a horizontal and

vertical field of view (degrees). Each View class object may have a Modifier class

object that can change the position or direction of a view by acting as the interface to

some type of input device. Typical Modifier class input devices include the Polbemus

Fastrack Magnetic Tracker, Dimension 6 spaceball, and the mouse.

The Terrain Class manages many environmental aspects of a simulation. The

environmental aspects include the polygon description of the earth where the simu-

lation is being held, the placement of cultural features such as bridges and buildings,

and the ambient light levels based on time of day. The Terrain Class is also respon-

sible for converting positions and orientations based on a local coordinate system

into positions and orientations based on the WGS-84 coordinate system (11).

The Pfim.Retnderer Class contains the primary iterative loop of the simulation.

This loop gets input from the user, tells the objects in the simulation to move, and

then outputs the appropriate graphics to the display. Finally, the Simulation Class

puts all of the pieces needed for a simulation together by declaring instances of the

appropriate classes.

29

"4"00" doo

"M:Figure 8. "beM~i clasRltons

ONOMM AUNNOW • 411m ift

~~~~igr8.ObjectSimisalbayoC+case thats enaslatei ucofnhsProre

functionality in a more abstract form. At its highest level, ObjectSim is a generic
visual simulation that a developer can use as a basis for a specific simulation. The

ObjectSim classes shown in Figure 8 represent the objects typically found in any

visual simulation. The Player Class is the super-class of the entities that interact

in a simulation. Their basic characteristics consist of a position (X,Y,Z) and an

orientation (heading, pitch, roll). The Airplane object and all the weapons in the

Virtual Cockpit simulation are Player objects. Each Player object also has a pointer

to an object of the FitModel class. The Flt..Model class manages the polygon

models for a Player object. It also allows several Player objects to share one instance

of a polygon model. The model is placed in different locations in the simulation

by having different transformations in the intermediate nodes before getting down

to the geometry node. One example of a single geometry description is shown in

Figure 6. Each 'bomb has its own location on the plane (Bomb Location) and a

Dynamic Coordinate System (Bomb RotDCS) for moving independently in the scene.

However, they all share the same polygon description for a bomb.

30



The View class controls what the user sees in the simulation and contains

several attributes useful for defining a view into the simulation. These attributes

include a position (X,Y,Z), a direction (heading, pitch, roll), and a horizontal and

vertical field of view (degrees). Each View class object may have a Modifier class

object that can change the position or direction of a view by acting as the interface to

some type of input device. Typical Modifier class input devices include the Polhemus

Fastrack Magnetic Tracker, Dimension 6 spaceball, and the mouse.

The Terrain Class manages many environmental aspects of a simulation. The

environmental aspects include the polygon description of the earth where the simu-

lation is being held, the placement of cultural features such as bridges and buildings,

and the ambient light levels based on time of day. The Terrain Class is also respon-

sible for converting positions and orientations based on a local coordinate system

into positions and orientations based on the WGS-84 coordinate system (11).

The Pfmr.Jenderer Class contains the primary iterative loop of the simulation.

This loop gets input from the user, tells the objects in the simulation to move, and

then outputs the appropriate graphics to the display. Finally, the Simulation Class

puts all of the pieces needed for a simulation together by declaring instances of the

appropriate classes.

Utilizing Other Processes

In addition to the three processes created by Performer, the Virtual Cockpit

generates two other processes, the Network process and the HOTAS Read process.

The Network process receives information on the network and updates the position

of other objects in the simulation. The information coming in from the network

contains the positions of objects controlled by other simulators, and weapon fire and

detonation information (29). The last process created by the Virtual Cockpit reads

information coming from the Hands-On Throttle and Stick (HOTAS).

31



Originally the Application process was responsible for reading the RS-232 serial

port connecting the HOTAS to the SGI workstation. In the initial version of the

Virtual Cockpit, this worked well because tests indicated that the simulation was

graphics bound. This means that the limiting factor on the frame update rate was

drawing the polygons in the scene. Tests conducted after converting the Virtual

Cockpit to ObjectSim, which greatly increased the frame rate, and adding both the

RADAR and weapon systems, which slowed down the Application process, indicated

that the simulation was not running as fast as was possible. The CPU running the

Application process spent over 20% of its time waiting for input from the HOTAS.

This idle time caused the total time required by the Application process and the

Cull process to exceed the time required by the Draw process. In effect, the Draw

process had to wait for its next draw list.

Reading the HOTAS in the Application process was taking too long, so I

decided to move the HOTAS read function to another process. The ObjectSim

Pfmr-Renderer Class has several function call backs in its design. These call backs are

simply calls to specific functions in the Simulation Class. These functions do not have

a predefined purpose and are available for customization of the simulation. A person

creating a simulation can perform some task at a specific time in the simulation, such

as after the draw list is made, by inserting the code into the appropriate function.

The Pfmr..Renderer Class will then call the function at the correct time.

One of these call backs is on the Cull process, and is called after the process

creates the visible polygon list for the Draw process. This process ran the fastest,

and the CPU loading for this process was less than either the Application or Draw

processes. Because of the faster execution time, I thought that the Cull process call

back would be a good location for the HOTAS read. I restructured the HOTAS

object to work with shared memory, and got the HOTAS read function working on

the Cull process. After running some tests I discovered that reading the HOTAS

slowed down the Cull process too much. Because it was now creating the draw list

32



R ainA p 7.3 6.1 373 0.6 30.1
with 100aoim

RGW in SqPM 2.6 23 6.2 0.6 13J
with M0 objow. .. ....

3a in App 4.8 4.0 16.1 0.6 20.3
with 0 obj=o _ _ _ _ _ _

Rea Win SCWusFca 1.9 1.1 1.4 1.1 6.3with 0 Obje_

Table 2. Application Process Execution Times (in ms)

and reading the HOTAS, the cull process could not finish creating a list of visible

polygons before the Draw process needed it. Since the Draw process did not have

any polygons to draw, the entire simulation disappeared. The Cull process is under

very demanding real-time constraints and should not be given any extra tasks.

The best solution was to create the Read process in addition to the Application,

Cull, and Draw processes. The Read process is a simple five line program that

contains an infinite loop. The code inside the loop sets a shared memory lock used

for synchronization and calls the HOTAS read function. The HOTAS read function

gets the data from the RS-232 serial port and then sets a second lock to prevent

simultaneous access of a shared memory structure. The function then copies the data

into the shared memory structure and resets the simultaneous access lock. When the

Application process is ready for the HOTAS inputs, it sets the simultaneous access

lock, copies the values in the shared memory structure out to local variables and

then resets both shared memory locks. Shared memory locks are not typically set

by one process and reset by another, but it was necessary in this case to synchronize

the two separate processes.

The synchronization lock allows the the Application process to run as fast as

possible. In order to ensure the fastest possible execution, the Application process

must be able to access the shared data structure on demand. When both processes

are running without the synchronization lock, the Application process may still have

33



to wait for the Read process to finish writing the data to the shared data structure.

The synchronization lock allows the Read process to update the shared data structure

once. The Read process must then wait for the Application process to reset the

synchronization lock before calling the HOTAS read function again. While the Read

process is waiting, the Application process has unimpeded access to the shared data

structure.

The Application process execution times for both before and after the creation

of the HOTAS Read process are summarized in Table 2. The data was taken from the

pfDrawChanStats function over four different runs, each run lasting approximately

two minutes. For the first two runs there were 100 objects being generated by

another simulator on the network. The Application process required extra time on

the first two runs to process data for the RADAR and to get the weapons targeting

information. The data gathered indicates that creating the Read process cut the

Application process execution time by 50%. Although the data being read by the

Application process is not the most current HOTAS input, there is no noticeable lag

because the frame update rate is typically 15 to 20 frames per second.

Improving Appearance and Adding Detail

Adapting the Virtual Cockpit to run in the Performer environment under Ob-

jectSim increased its frame rate from approximately 7 frames per second to 30 frames

per second. The higher frame rate allowed us to increase the detail of the simulation

by adding more polygons. The first step was to substitute a much more detailed ter-

rain model and a better model of the F-15E that surrounds the user. These changes

were made by simply changing the data files read into the Performer database by

the Virtual Cockpit. It was also decided that the instrument panel of the Virtual

Cockpit should be redone and be modeled after an actual F-15E.

The Virtual Cockpit's original instrument panel (Figure 9) was a simple display

consisting of six dials showing information such as airspeed and altitude. The actual

34



Figure 9. Virtual Cockpit v1.0 Layout

gauges were a texture map on a single polygon, and the needles were small polygons

that overlaid the texture map. The first attempt at improving the Virtual Cockpit's

instrumentation also used a texture map. The texture map was created by scanning

in photographs of a real F-15E interior taken by Capt Alain Jones and Capt Matt

Erichsen. After the image was scanned in, it was touched up using the ADOBE

Photoshop software on a MacIntosh. I then used the final image as a texture map and

placed it on the instrument panel. The realism of the image used contrasted poorly

with the animated-quality of the rest of the simulation, and the two-dimensional

projection of the texture map would also cause false depth cues if the Virtual Cockpit

ever generated stereo images.

As an alternative to the texture map approach. I decided to model the instru-

ment gauges and displays with polygons. In the first attempt using this method, I

added the instrument polygon descriptions directly to the file containing the F-15E

description. This approach also had its problems. The actual dials and gauges in

35



ScOM

Node

Airplanee

SCS SDe Orienatons

Fgr10IntuetDescriptionssc in PefresriTre

36



Figure 11. Actual F-15E Cockpit Layout

an F-15E are approximately five centimeters across. with the numbers inside only a

few millimeters high. The polygonial descriptions of all the objects in the simulation

are created using the MultiGen modeling software. Since version 12 of MultiGen

does not have sufficient resolution to model polygons smaller than a millimeter, the

numbers inside the gauges could not be modeled to scale.

The final solution was to use MultiGen and create each instrument as a separate

description. An individual gauge was modeled as being one meter across to give the

numbers inside the desired resolution. At start up time. the Virtual Cockpit reads

all of the instruments' polygon descriptions and makes them children of the F-15E's

parent node. It then inserts another node between the parent node and the polygon

nodes for each instrument. This node contains a scale factor that reduces the size of

its ch:Idreii by 9.-7?7 and a transla* ion factor to properly place the gauge or display on

the panel. Figure 10 shows the Performer data tree structure after the instrument

descriptioi- wa, inserted. Because the instrument descriptions are children of the F-

37



i i q

Figure 12. Virtual Cockpit Layout

15E model, the same transformation that updates the F-15E model's position in the

simulation also updates their position. This method provides the resolution needed

for the gauges, without the overhead of explicitly moving the instruments' polygon

descriptions. Once this method was perfected, Lt Matt Breeden created the actual

polygon descriptions of the individual instruments, which were then added to the

simulation. The layout of an actual F-15E instrument panel is displayed in Figure

11 and the Virtual Cockpit's new instrument panel is shown in Figure 12.

Sound

The interior of any' attack aircraft is very noisy. The sounds of the engines.

missile lock-on indicators, and missiles firing are an integral part of any simulation.

Although adding sound to the Virtual Cockpit was not in the original scope of m%

thesis effort, the object oriented nature of the Virtual Cockpit made it extremely

easy to add sound to the simulation. I utilized a preexisting C±+ class that can

communicate with a MacIntosh computer via a serial port. When a sound needs to

38



be generated, such as a missile firing, a call is made to a method in this class with

the volume, the stereo channel, and an enumerated type defining the sound. The

method encodes this information so it can be sent out on the RS-232 serial port.

The information is then sent out over a cable connecting the RS-232 port on the SGI

workstation to the modem port on the MacIntosh. The software on the Macintosh

interprets the information coming in the modem port, determines the correct sound

file to use, and plays the sound on external speakers connected to the Maclntosh.

(31)

39



IV. Weapon Controller

The Weapon Controller acts as the interface between the Virtual Cockpit and

all the munitions it carries. It is responsible for initializing weapons, determining

when the pilot releases a weapon, and ensuring each active weapon updates its

position. The Weapon Controller also allows the user to easily modify the weapon's

position on the aircraft, as well as the number and type of weapons carried by the

Virtual Cockpit. Table 3 gives a summary of the types, maximum numbers, and

approximate weight of the weapons that the Virtual Cockpit can carry (8). The

Weapon Controller does not impose a restriction on the number or combination of

weapons loaded as long as it does not exceed the limits shown in Table 3; therefore

the user must exercise some discretion when configuring the Virtual Cockpit for a

sortie.

MK.. •wv U e boo a 1a0Iob

MK-84m U 1.11 GD.A bomb 3 am be
IPaw14•mue~ H Lw • 3 IISOGOUI-16 PeIs I • 0 ýGua N I= 40

GOO10 PowwNI I•GddOw mb

GOU-15-1 VO boft3 2450 b

U41A-1 oire 9mm0 2 be

AGM4- 00000- OmDW Of W a IMew

ANM7 RADAR gmild air w Vw~ 4 19O e

AN"e Uo k s&VWR 4 $ab

A1*120 RADAR 9 ir w w~ nub

Table 3. Virtual Cockpit Munitions

40



THIS

PAGE
IS

MISSING

IN

ORIGINAL

DOCUMENT



Figure 14. Weapons loaded on the wings

database tree called a RotDCS. The RotDCS is a transformation matrix that de-

scribes the position and orientation of a geometric model. The RotDCS of each

missile or bomb is set to the load point and is made a child of the aircraft model.

Because the bomb or missile RotDCS is a child of the aircraft model., the bombs and

missiles remain at the same relative position on the aircraft without explicitly up-

dating their position and orientation. When a weapon is released from the aircraft,

its status is set to ACTIVE, the link from the aircraft model to the weapon model is

removed, and a new link from the scene node to the weapon model is created. The

propagate method in an ACTIVE weapon moves the geometric model through the

simulation by updating the RotDCS with a world position and orientation.

The munitions modeled in this simulation do not accurately portray the true

characteristics of the actual weapons. However. they do model the essential function

of the weapon. For example, my version of a GBU-10 laser guided bomb does not

even atteinpl to follow the flight path of an actual GBU-10. but it will hit the

43



target the pil,]t has in the cross hairs of the forward looking camera. The reason I

made this design decision relates back to the Fidelity versus Realism dilemma. With

the resources currently available, accurately modeling the flight path of a bomb or

missile would take too much processor time and would cause the frame update rate of

the simulation to fall below acceptable limits. However, my design should allow the

methods for moving the weapons to be easily changed when more capable computers

become available.

M-61A-1 CANNON

The cannon carried by the Virtual Cockpit is modeled after the M-61A-I 20mm

cannon (8). The M-61A-1 cannon carried by the F-15E holds 940 rounds of ammu-

nition, and can be used in both air to ground and air to air modes. I based the

movement of a cannon round in the simulation on ballistic equations. I ignore aero-

dynamic forces such as lift and drag and consider only the effect of gravity on the

path of the bullet. The ballistic equations require an initial position, initial velocity,

the direction of gravity, and a start time. I create a transformation matrix as the

first step in calculating the initial position and velocity. This transformation matrix

converts coordinates that use the aircraft's center of gravity as the origin into coor-

dinates that use the center of the earth as the origin. I calculate the initial velocity

vector by first creating a muzzle velocity vector defined in the aircraft coordinate

system. I defined the X component of the muzzle velocity vector to be 1000 m/s and

the Y and Z components to be 0 m/s. This moves the round straight out the nose

of the aircraft. I multiply the muzzle velocity vector by the transformation matrix

and add the aircraft's velocity vector to get the initial velocity. I then find the ini-

tial position of the cannon round by taking the position where the round exits the

cannon in aircraft coordinates and multiplying that point by the aircraft to world

transformation matrix. This point is then translated by the aircraft's world position.

The translated point is the initial position of the cannon round in world coordinates.

44



The direction of gravity is determined when a round is fired by creating a segment

from the initial position to the center of the Earth. This segment has a unit vector

defining its direction. I multiply each component of the direction unit vector by 9.81

meters/seconds2 , which is the acceleration due to gravity on the Earth's surface.

The starting time is simply the time the cannon round was fired.

During each time step in the simulation, the cannon round updates its velocity

and then uses the updated velocity to calculate its new position. The new velocity

is calculated by multiplying the time elapsed since the last update by the vector

describing the acceleration due to gravity and then adding it to the old velocity.

The position is updated by taking the new velocity, multiplying it by the elapsed

time, and adding it to the last position.

After the cannon round has projected its next position, it must determine if

it hit any object in the simulation. The objects in the simulation are kept in an

array of pointers by the Simulation Entity Manager, a part of ObjectSim (30). The

intersection calculation consists of two separate tests, the Half-Plane Test and the

Polygon Intersection Test. These tests are performed in order and if an object fails

the Half-Plane Test, then the Polygon Intersection Test is not performed. The Half-

Plane Test is the least complex and is performed on every object in the simulation.

The test compares the position of an object against the volume inside two overlapping

half-planes. The first half-plane is defined by the old position of the cannon round

and a normal in the opposite direction to the movement of the round. If the object

is in the proper half-plane, i.e. in front of the round, then the object is compared

against the second half-plane. The second half-plane is defined by the new position of

the round with the normal to the plane in the direction of motion of the round. If an

object in the simulation falls in the volume of space interior to these two half-planes,

then the more expensive intersection test is performed.

The Polygon Intersection Test compares the segment against the actual poly-

gons that describe an object in the simulation. Only the polygons that face toward

45



the starting pcint of the segment are considered. The culling of back facing polygons

is a quick check, and substantially reduces the number of polygons considered in the

test. If the segment does hit one of the polygons in the object model, the intersection

test function returns the point of intersection. The intersection point is defined in a

coordinate system with the origin at the center of the object. Out of the three tests,

only the Polygon Intersection Test is absolutely necessary; however, it also takes the

most computing time. The other tests are an effort to limit the number of times the

Polygon Intersection Test is done.

If the round of ammunition does not intersect any object in the simulation,

the altitude of the round is tested against the elevation of the terrain underneath

it. If the round's altitude is less than the current elevation, then it impacts the

ground, and detonates. If a round of ammunition has not hit another object or the

ground after 20 seconds, it automatically detonates. I made this design decision

in an attempt to reduce the number of calculations required per frame. After 20

seconds of flight, the round of ammunition has moved 20 Kin, well beyond visual

range of the pilot, and has missed any target at which the pilot could be shooting.

While there is a very small chance the round of ammunition could hit an object, this

added bit of realism does not justify the necessary calculations.

A round of ammunition broadcasts two types of Protocol Data Units: Fire

and Detonation. The Fire PDU is sent once when the pilot pulls the trigger. A

round of ammunition issues a Detonation PDU when it impacts an object, hits the

ground, or expires after 20 seconds. If the round hits an object that is controlled

over the network by another simulator, the identification for that target and where

the target was hit are broadcast as part of the PDU. For local objects such as

bridges or buildings, only the location of the detonation is broadcast. These local

objects are not controlled by any single simulator, therefore each simulator must

determine the effect of a detonation in its own local version of the simulation. This

has the potential to cause significant discrepancies between the different simulators,

46



one evaluates a bridge as being destroyed, while another evaluates the same bridge

as undamaged. Since single round of ammunition is relatively uninteresting in the

distributed simulation, no Entity State PDUs are issued in order to conserve network

bandwidth.

Mk-82, M'k-83, and Mk-84 Bombs

The Mk-82, Mk-83, and Mk-84 bombs are the standard high explosive fragmen-

tation bombs used by the US Air Force. The major difference in the actual bombs

is their weight, which is 500 pounds, 1000 pounds, and 2000 pounds respectively.

Only three differences exist in the way the simulation handles the bombs. The first

difference involves how much weight each bomb adds to the Virtual Cockpit when

it is loaded. The second difference is the size of the geometric model of the bomb in

the simulation. The Mk-84 model is the largest and the Mk-82 model is the small-

est. The last difference is the destructive blast radius, again with the Mk-84 being

largest. All three types of bombs are unguided and follow a simple ballistic path

after being released from the Virtual Cockpit.

The method of updating the position of an unguided bomb is very similar to

the method for moving a cannon round. The initial position of the bomb is the load

point on the aircraft, which is transformed into a world coordinate position. The

initial velocity of the bomb is the velocity of the aircraft at the instant the pilot

releases the bomb plus an additional velocity of three meters/second away from the

bottom of the aircraft. This additional velocity simulates the push a bomb receives

from the ejection rack and ensures the bomb will not hit the airframe when released.

The calculations used to find the next position are the same as for the cannon round.

Unlike the cannon rounds, bombs broadcast three types of Protocol Data Units.

A Fire PDU is issued when the pilot releases the bomb, and a Detonation PDU is

broadcast when the bomb hits the ground and detonates. While the bomb is in

flight, it issues an Entity State PDU. The Entity States PDU sends acceleration,

47



Figure 15. Alignment of Body Axis During Flight

velocity, position, and orientation information out on the network. This information

allows other simulators or observers to monitor the bomb as it falls. The bomb

must calculate its acceleration, velocity, and position each frame to properly move

through the simulation, so broadcasting this information requires no extra effort.

Calculating the simulated bomb's correct orientation for the Entity State PDU does

require some extra effort. As a real MK-82 falls, aerodynamic forces such as lift and

drag act upon it to orient its body to minimize drag while it is falling. However,

a bomb dropped by the Virtual Cockpit uses only ballistic equations for its motion

and the aerodynamic forces are ignored. Since it is the aerodynamic forces that

determine the orientation of a bomb, I created an artificial means of calculating the

bomb's orientation. I align the X axis of the geometric model with the velocity vector

(Figure 15). I then calculate the bomb's heading by finding the arc tangent of the

X component divided by the Y components. The bomb's pitch is the arc tangent

of the velocity vector's Z component divided by the length of a 2 dimension vector

described by the X and Y components. This method roughly models what actually

happens on real bombs and missiles. The tail fins and streamlined shape of the bomb

48



casing attempt to minimize the drag on the bomb as it falls. Drag is minimized by

aligning the bomb's long axis with the relative wind. The relative wind is caused by

the bomb's movement through the air, and in this case, the movement is represented

by the velocity vector. The model orientation method described works well and gives

the bomb a natural looking orientation.

I designed the bombs in this simulation to detonate only after they hit the

ground. Once the bomb gets its new position, the altitude of the bomb is compared

to the elevation of the terrain. If the altitude is less than the elevation, I create

a segment starting at the bomb's old position and going toward its new position.

The point where this segment intersects the terrain is where the bomb detonates.

Once the bomb detonates, a message is sent to the Simulation Entity Manager (30).

The Simulation Entity Manager checks all of the objects in the simulation to see if

they are within the blast radius of the bomb. If an object that is not controlled by

another simulator is in the blast radius, the Simulation Entity Manager sets its status

to damaged. Each object that is controlled by another simulator must evaluate the

effect of the detonation on itself; thus making it unnecessary to put a target identifier

in the Detonation PDU.

GBU-12, GBU-16, and GBU-I0 Bombs

Actual GBU-12, GBU-16, and GBU-10 bombs are Mk-82, Mk-83, and Mk-84

bombs with a special guidance unit and movable fins attached. The desired target

is illuminated with a laser by the launching aircraft, another aircraft in the area, or

ground forces. The guidance package moves the fins so the bomb glides at a high

velocity into the target (8). In this simulation, the Virtual Cockpit is the only aircraft

that can designate a target. The Virtual Cockpit has a simulated camera underneath

the fuselage called the Forward Looking Infrared or FLIR (11). The FLIR has two

different modes, the normal mode where it looks at a series of predefined points or

the cue mode which lets the pilot manually control the view. In either mode, the

49



point on the grolmnd seen through the cross-hairs of the FUR is the designated point

for the bomb. When the pilot releases the bomb, it evaluates the designated point

with respect to its position. If this point lies within range of the bomb, then the

bomb follows a vector from its current position straight to that point. This munition

is unpowered and therefore the range of a bomb is based solely on its altitude and

how far it can glide before hitting the ground. If the cross-hairs of the FLIR do not

lie on the ground or the target is out of range when the bomb is released, then the

bomb falls in a basic ballistic path. All other aspects of these bombs such as the

PDU broadcast and blast radius are similar to the Mk-82, Mk-83, and Mk-84 bombs

described above.

GBU-15

An actual GBU-15 bomb is a precision guided 2000 pound bomb. The guidance

package for this bomb consists of a television camera and movable fins. The television

camera transmits an image from the nose of the bomb back to the attacking aircraft.

The pilot or weapon systems officer uses this image to fly the bomb to the target.

(8:83) 1 was able to implement the transmission of the image from the bomb back

to the Virtual Cockpit. My version of the GBU-15 uses the FLIR display to show

the pilot the bomb camera view. The pilot selects the GBU-15 munition and presses

the button mid-way down on the stick handle. From the time the button is pressed

until the bomb detonates, the Weapon Controller gets the bomb's world coordinate

system position and orientation and saves it in a location the FLIR can access. The

FLIR uses the position and orientation information when computing the view shown

in the display.

The other aspects of the Virtual Cockpit's version of the GBU-15 are identical

to the Mk-84 bomb described earlier. I have not provided a means for the pilot to

control the path of the bomb once it is in flight. This capability can be added in the

future as part of a project to add a weapon systems officer to the Virtual Cockpit.

50



Missiles

I chose to implement four different missiles on the Virtual Cockpit. The three

air-to-air missiles are the AIM-120 AMRAAM, the AIM-9 Sidewinder, and the AIM-

7 Sparrow. The AGM-65 is the single air-to-ground missile. I did not implement any

type of aerodynamic model for the movement of these weapons; instead I directly

manipulate a missile's velocity vector to guide it towards a target. I took this

approach for two reasons. First, the flight dynamics of the AIM-120 and AIM-7

missiles are classified, and the dynamics of the AIM-9 missile are restricted. The use

of the actual flight dynamics would severely restrict the distribution of the Virtual

Cockpit. Second, the number of calculations required would cause the frame rate to

slow down below an acceptable rate.

AIM-120

The AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) is the

latest missile to be added to the Air Force and Navy inventory. It has a range of

approximately 10 km against receding targets, but the range increases to 50 km

against head-on targets (15). The AIM-120's most significant improvement over

previous missiles is its launch and leave capability, provided by its own active mono-

pulse radar. In short range engagements, the pilot designates a target and the missile

radar locks on to it. The pilot then releases the missile, which no longer requires

information from the launching aircraft. In long range engagements, the AIM-120

uses an inertial guidance system to maneuver the missile close to the target. After

the missile is in the vicinity of the target, the active radar locks on and guides the

missile to the target.

I chose to implement the AIM-120 first because of the launch and leave capa-

bility. This capability removes any need for the missile to interact with any object

other than the target. The pilot of the Virtual Cockpit locks on to the desired target

with the RADAR (11) and then releases the missile. The missile keeps a pointer

51



to a data structure that contains the target's position and orientation. The Object

Manager constantly updates the position of the target (30). For the first second

of flight, the missile moves at 1.2 times the Virtual Cockpit's velocity vector. This

maneuver gives a good separation from the aircraft and prevents the missile from

hitting the Virtual Cockpit. After the first second, the missile goes into its active

tracking and boost phase. During each frame of the simulation, while the missile is

in boost phase, it calculates a unit vector from its current position to the target's

position. It then scales the unit vector by the magnitude of current velocity vector

plus 10 meters per second and uses this as its velocity vector. The boost phase of

flight lasts approximately five seconds. At a frame rate of 15 HZ, the acceleration of

ten m/s/frame brings the final velocity of the missile to 1700 mph above the velocity

of the Virtual Cockpit. This is below the AIM-120's published figure of mach 4 (8),

but it is a good approximation. After 40 seconds of flight, I start adding an accel-

eration due to gravity. The gravity component of the final velocity vector limits the

range of the missile and keeps it from flying off to infinity. The missile's orientation

is calculated in the same way as a bomb's orientation.

During each frame of the simulation, the missile calculates an azimuth and

elevation to the ti.rget. If at any time the azimuth or eleva.tion exceeds a 90 degree

field of view, the missile breaks lock and no longer pursues the target. While this

algorithm does not accurately represent the seeker on a real AIM-120, it does allow

another simulator the possibility of evading the missile.

AIM-9

The AIM-9 Sidewinder is an infrared radiation (IR) guided air-to-air missile

designed for close-in air-to-air combat. The missile became operational in 1956 and

has been through 12 different production models. The missile's seeker unit detects

IR sources, such as aircraft engine exhaust, and locks on to the most intense source

in its field of view. The range differs for specific models but is typically about 10

52



miles. The latest versions of the AIM-9 missile have an all aspect angle capability.

This means that the missile seeker head is sensitive enough to track a target from

all angles. The seeker can detect the heat generated by friction on the target's wings

and fuselage as well as heat from the engine exhaust (15). Once the missile is locked

on and in-flight, it does not require any inputs from the launching aircraft (8:246).

When the pilot selects the AIM-9 missile in the Virtual Cockpit, it automat-

ically goes into seeker mode. The seeker method compares the position of all the

aircraft in the simulation against a cone-shaped frustum. The frustum's sides extend

out at 45 degrees to either side of the missile, and its base is 1.6 miles away. If an

aircraft is in this volume, the missile then computes its aspect angle. Once locked

on and released, the missile checks the target against the frustum each frame. If at

any time the target maneuvers outside this frustum, then the missile loses lock and

continues to fly in a straight line until it falls. During flight the missile does not

consider any other targets or re-establish locks. I chose this design because mov-

ing the missile and tracking targets during flight slowed the frame rate down below

acceptable levels.

The simulated movement of the AIM-9 is similar to AIM-120 described above.

The acceleration of the simulation's AIM-9 is five meters per second per frame for five

seconds. This acceleration gives the missile a velocity of 840 mph above the velocity

of the Virtual Cockpit at launch. The published speed of the actual AIM-9 missile

is approximately macd .5 above the velocity of the launching aircraft (10:91). The

acceleration due to gravity is added in after 20 seconds.

AIM-7

The AIM-7 Sparrow has been through many different versions since the first

model reached initial operational capability in 1956. The current model, the AIM-

7M, uses a Continuous Wave, Semi-Active Radar Homing to track the target. Like

the AIM-120 missile, the Sparrow homes in on radar energy reflected from the target

53



aircraft. In the case of the AIM- 120 the radar energy comes from the missile, but the

AIM-7 relies on the radar from the launching aircraft. Because the radar homing is

continuous wave, the missile requires a constant radar signal return from the target.

The pilot in the launching aircraft must ensure that the radar remains locked

on the target aircraft until the missile detonates. Keeping the radar lock on target

severely limits the launching aircraft's maneuverability and prevents the pilot from

engaging other targets.

To launch the simulated missile, the Virtual Cockpit's pilot designates a tar-

get on the RADAR and selects the AIM-7 missile. The missile gets a pointer to

the designated target's record structure from the RADAR. After the pilot fires the

missile, the simulated AIM-7 missile checks the object currently designated by the

RADAR (11) against its target. If the designated target is not the same as the mis-

sile's original target, the missile loses its lock on the target. The missile can also lose

lock on the target if the target maneuvers outside the missile's seeker frustum. If

the missile lock is broken, the missile ceases all course corrections and flies along its

current heading until it hits the ground. All other aspects of the missile are similar

to the AIM-120.

AGM-65

The actual AGM-65 is an optically guided air to ground missile, more com-

nionly known as the Maverick missile. A television camera in the nose of the missile

broadcasts a picture back to the controlling aircraft. The weapons systems officer

uses the view from the missile to fly the missile into the target.

The Virtual Cockpit's version of the Maverick missile is unguided but does

provide camera images to the pilot via the FLIR. The display in the FLIR (11) is

generated in a way similar to the GBU-15, described in a previous section. The

motion of the missile is similar to those described above, except the direction of the

missile's velocity vector is the same as the aircraft's velocity vector.

54



V. Head Up Display

The Head-Up Display (HUD) is an essential part of a modern attack aircraft's

cockpit instrumentation. A HUD essentially repeats the information shown on head-

down performance instruments such as airspeed, altitude, heading, and angle of

attack. The HUD also shows other information such as flight path, navigation data,

and targeting data depending upon the specific mode of the display. A HUD projects

information onto a transparent screen mounted above the instrument panel in front

of the pilot. This positioning allows the pilot to monitor flight information and

remain aware of what is going on outside the aircraft. The transparent quality of

the HUD screen also allows symbols, such as the Target Designation Box, to be

overlaid on objects outside the cockpit. The pilot can see objects outside the cockpit

through the symbols and know certain information about the objects based on the

symbols (9:13).

As stated previously, the HUD was one area of the original Virtual Cockpit that

required significant improvement. The previous HUD was designed as a geometric

object that existed out of the pilot's view, at the center of gravity of the cockpit.

Each possible number position on the HUD was overlaid with the numbers 0 through

9 in a stack. When it came time to render the HUD, the geometric description of each

number in the stack was transformed by a 4x4 matrix. The simulation multiplied

the numbers and symbols that were visible by a translation and rotation matrix

to move them to the proper position, and multiplied all the remaining numbers by

an identity matrix. Only one-tenth of the information manipulated was actually

displayed, making this design inefficient and slow.

The Virtual Cockpit's HUD design does not exactly match the HUD of an

F-15E. Changes were made to the different modes due to the limited user interface

in the Virtual Cockpit. Currently, someone flying the Virtual Cockpit uses only the

switches available on the HOTAS to interact with all the instrumentation. While

55



c _:rTr

ama&'aD• •.m .....ii.••..•.... TAN= '.i T •T•-• .. D0

Figure 16. Virtual Cockpit Head Up Display

Capt Erichsen and I made creative use of the HOTAS switches, they cannot fully

replace all the switches in a real cockpit. The design is based on information from Air

Force Manual 51-37, the F-16 HUD avionics manual and diagrams of an F-i5 HUD
from a commercial publication (33). Figure 16 shows the Virtual Cockpit HUD

in ground attack mode with the different symbols labeled. The Virtual Cockpit

HUD requires information from the Weapon Controller and the RADAR objects.

The RADAR (11) is responsible for determining the current mode (air to air, air

to ground, navigation) of the aircraft system and what target, if any, is currently

designated. The Weapon Controller is responsible for reporting the current weapon

selected and the count of that type weapon remaining on the aircraft.

The implementation of the Head-Up Display logically divides into two distinct

sections. The first section draws the HUD and the second calculates the positions of

the targeting and navigation cues. The first section relies on the line drawing func-

tions in the SGI Graphics Library to display the HUD and the flight information.

56



As explained in the section in Chapter III on multi-processing, the SGI architec-

ture allows only a single processor to have control of the graphics drawing pipeline.

Therefore the code to draw the HUD must run on the same processor that draws

the polygons in the scene. The draw processor executes the code to draw the HUD

through a function call back as soon as it draws the last polygon in the F-15 geo-

metric description. Because the simulation has just drawn the F-15, all the matrix

transformations to draw the aircraft model are still on top of the matrix stack. All

the coordinates to draw the HUD are passed through these transformations as well.

Since the drawing of the scene is the most computationally expensive task in the

simulation, a different processor runs the code to calculate the positions of the HUD

symbols.

The flight information always shown on the HUD includes the heading, air-

speed, altitude, and climb ladder. The heading, airspeed, and altitude indicators are

on sliding scales that show trends in the information. For example, as the aircraft

climbs, numbers appear at the top of the altitude indicator and move down. The

lines in the indicators are created using SGI Graphics Library function calls and are

rotated or translated depending on the speed, heading, altitude, and orientation of

the aircraft. The text characters that appear on the HUD were more difficult to

create. The SGI Graphics Library provides functions for writing text to a graphics

window. However, the text characters are not treated the same way as other graphic

objects. While the SGI Graphics Library functions place the characters in the right

position on the screen, the characters are not scaled or rotated with the rest of the

scene. This effect became very noticeable on the climb ladder when the plane rolls

inverted or the pilot looks off to one side.

The solution to the text problem required the text to be drawn using the SGI

Graphics Library line drawing functions. A character set drawn with line strokes is

known as a Vector Font, because the characters are drawn with short lines. I obtained

code implementing a two dimensional Vector Font set from the Wright Laboratory

57



Joint Cockpit Office. This code was modiLed to work in three dimensions and

increase its overall utility.

Cues

The Flight Path Marker, Target Designation Box, Continuously Computed

Impact Point, and Gun Sight are four separate cues on the Virtual Cockpit HUD

that a pilot uses for targeting and navigation. All four cues relate a point outside

the aircraft in the world to a point on the HUD. For each of the cues I will give a

brief explanation of its function, and how I calculate the point in the world. After

the explanation of the cues, I will explain how a world position is transformed to a

point on the HUD.

The Flight Path Marker is a visual representation of the aircraft's velocity

vector. The Flight Path Marker shows what the position of the aircraft will be in 20

seconds if the pilot does not modify the velocity vector. It is the velocity vector of the

aircraft and not the direction of the aircraft, that will determine where the jet will go.

For example, when pulling up out of a steep dive, the nose of the aircraft may point

toward the horizon as in level flight, but the momentum of the aircraft will cause it

to continue to lose iltitude. Of course it is the pilot's input to the aircraft control

surfaces that modify the velocity vector, but depending on the specific conditions,

there might be a significant amount of lag time between the inputs and the desired

direction of the velocity vector. To find the aircraft's position in 20 seconds, the

HUD multiplies the X, Y, and Z components of the aircraft's velocity vector from

the aeromodel by 20. The resulting value is how far the aircraft would have moved,

and this is added to the current position of the aircraft. The 20 second interval was

chosen because it places the transformed Flight Path Marker symbol in the center

of the HUD when the aircraft is in straight and level flight.

Target Designation Box or TDB is a small rectangle placed around a selectee

target or navigation point to outline its position in the world. When the target or

58



navigation point is outside the field of view of the HUD, the TDB clamps to the

edge of the HUD. For example, if a target is above the Virtual Cockpit at the two

o'clock position, the TDB clamps to the upper right corner of the HUD showing the

pilot he or she should climb to the right to bring the target into view. The TDB

is particularly useful when the target is beyond visual range. The world position of

the TDB is the same as the target or navigation point the pilot selected.

The pilot uses the Continuously Computed Impact Point (CCIP) for attack-

ing ground targets with bombs. The CCIP shows the point on the ground where

an unguided bomb will impact if the pilot released it at that instant. The CCIP

symbol consists of three parts: the Flight Path Marker, the Impact Circle, and the

Bomb Drop Line. The Flight Path Marker is the same symbol as described above

and represents the aircraft's path on the bomb run. The Impact Circle shows the

place on the ground where the bomb will hit. The Bomb Drop Line is simply a line

connecting the Flight Path Marker and the Impact Circle. The Flight Path Marker

calculation has already been explained. The Impact Point calculation uses the same

ballistic equations as those used to update a bomb's position. The ballistic equa-

tions are detailed in Chapter 4. The equations iterate with a time increment of 0.1

seconds until the projected path of the bomb intersects the ground. The projected

intersection point is used as the world position of the Impact Point.

The pilot uses the Gun Sight to strafe targets with the 20mm cannon. The

Gun Sight shows the predicted position of a cannon round fired at any given time.

The predicted position is set one second in the future. The Gun Sight uses the same

ballistic equations as the 20mm cannon rounds. The equations run once with a time

increment of one second.

Viewing Thansformation

The position on the HUD of all four of the targeting cues is calculated in

a similar manner. I perform a three-dimensional to two-dimensional perspective

59



Figure 17. Side View of Virtual Cockpit Head Up Display

viewing transformation on all the world coordinate positions of the targeting and

navigation cues. The perspective viewing transformation creates a two-dimensional

graphics screen inside the simulation. This type of transformation is described in

many computer graphics texts (12). To correctly set up the viewing transformation,

the world, aircraft, and HUD coordinate systems must be properly defined. The

world and aircraft coordinate systems definitions are described in the section on DIS

v2.0 axis systems in Chapter I1. Figure 17 illustrates the viewing parameters for the

HUD coordinate system and viewing transformation are defined.

Creating the viewing transformation matrix is the first step in converting world

coordinates to coordinates on the Head-Up Display. The HUD class initializes this

matrix during the simulation start up and does not change the matrix during the

simulation. The view reference point (VRP), and two unit vectors, the view plane

normal (VPN) and the view up vector (Vup), define the viewing coordinate system.

The VRP, VPN, and Vup are described in the aircraft coordinate system. The

aircraft coordinate system's origin is at the F-15's center of gravity with the X axis

out the aircraft's nose and Y axis out the right wing. The view reference point is

the center of the HUD. The view plane normal goes along the X axis of the aircraft

toward the pilot's eye point, and the view up vector goes out the top. Once the

viewing coordinate system is determined, the viewing volume is defined by setting

60



the perspective reference point (PRP) and the window size, relative to the view

coordinate axis. The PRP of the viewing volume is the pilot eye point. The actual

size of the HUD defines the size of the viewing window. The front clipping plane

equals 0, and the back clipping plane equals 20,000 to ensure that all objects in

the view volume will be seen. Once all of these parameters are set, the viewing

transformation matrix is built as outlined in Computer Graphics, Principles and

Practice (12).

A series of transformations is performed on a point in the world coordinate

system to find its location on the HUD. First the point in the world coordinate

system must be converted to a point in the aircraft coordinate system. This is done

by translating the point by the negative aircraft position and then rotating the point

by the heading, pitch, and roll of the aircraft. Once in the aircraft coordinate system,

the point is multiplied by the viewing transformation matrix described above. A 3D

window to 2D viewport transformation converts the point to the aircraft coordinate

system so that it can be drawn in the call back routine. In cases where the point lies

outside the HUD, the point clamps to the edge for the TDB, Flight Path Marker,

and Gun Sight. For the CCIP, the Impact Point is clipped away, and the Bomb Drop

Line goes to the edge of the HUD.

61



VI. Results and Recommendations

Results

At the end of 1992, the AFIT Virtual Cockpit vl.0 was able to fly in a Dis-

tributed Interactive Simulation and participated in the Zealous Pursuit Exercise.

The frame rate was barely acceptable at approximately seven frames per second and

frequently dropped lower depending on what wa. happening in the simulation. The

interior instrumentation, the geometric model used for the airframe of F-15, and

models of the other entities were very simple and lacked the required fidelity. The

simulation used the SimNet network protocol and assumed a flat earth coordinate

system. It was impossible to interact with other entities in the simulation because

the Virtual Cockpit did not have any weapons delivery capability, and it was very

difficult to find the other entities by only visual means.

During this past year students at AFIT made a significant effort to improve

the Virtual Cockpit v2.0 and address the problems mentioned above. My thesis and

the work of Mr. Steve Sheasby, Capt Mark Snyder, and Capt Matt Erichsen figured

prominently in this endeavor. Due to the complexity of all ihe different issues, it

was impossible for any single person to work in isolation, and in the final analysis

it was a team effort. The capabilities of the Virtual Cockpit are shown in Table 4.

This table also contains features that are not yet included in this version of Virtual

Cockpit but should be considered for the next.

Capt Mark Snyder lead the way in the migration to Performer by creating the

ObjectSim framework (30). The class definitions in the ObjectSim structure made

porting the existing Virtual Cockpit code to Performer relatively easy. The process

of moving the Virtual Cockpit over to ObjectSim took !ess than three days. The

built-in multi-processing support provided by Performer increased the frame rate

substantially. The increased frame rate allowed the Virtual Cockpit to use more

detailed geometric models for the terrain, instruments, airframe, and other entities

62



SVC-I.0 VC-2.0 VC-X

SX X

C•T X X X
m•Mom• D• X X
mmiDART X X
$m•o CRT X X

•t• x x

• € F.mity Suue X
SmdJRec•¢ Fu•
•ve DemoatioB

DIS
• €,'E.• State X X
Send/Receive Free X X
Seed/Retire Demmmo. X X
Smdate•ve F..mi•mcm X
•mdA•mv¢ lm• X
Smd/ga:e•e Czil•m X

coz•dm• sys:m•
WGS-&I X X
Flit Fm-& X X X

RADAR
Air-to-Air X X
Air-to-GrimM X X
Nsvi• X X

FLIR
Cue Made X X
Ttw.k lVl•e X X

RADAX W• Rmei• X
ECM/ECOVt X

Avioa•
SNtviptt•l Sym•m X X

Global l•o•dooJJ• Symm X
T•'fir•g Air Nr,,iptiot] X

p ......
lmm'm•mm

Simple Tc:m•e M• X
.. Polygm Desctipt•Bs based o• F-15 , X X

Head-Up D•pily
Sl•fform tio. X X

T•ge•g l•formadee X X
CCIP X X
F•xed Gin1 $isbt X X
T• De•g• Box X X
S• o,,. s•W x

We.Koms
C, mnty Bombs X X
LASER Guided Bombs X X
Elecm•O?•c Guided Bombs X
SX X
RADAR Guided Mi•e X X
I•• X X
•m,,,<• • •= x

wetpm Sy•m ,s.Offx• (B•ck-Seater) X

Table 4. Virtual Cockpit Capabilities - Past, Present, and Future

63

m • alunn I mmm m.. w..,. : .m.•

m



in the simulation. The frame rate over a fairly complex, texture mapped, 25km

by 50km terrain (approximately 7400 polygons) with 500 dynamic objects and 200

static objects is 15 to 20 frames per second. The ability to use several different

devices to modify a user's view is an additional benefit gained from ObjectSim.

Capt Matt Erichsen developed the RADAR and Forward Looking Infrared

(FLIR) Displays for the Virtual Cockpit (11). The RADAR has three modes,

(Ground, Air-to-Air, and Navigation) and a range of up to 160 miles. When the

RADAR is in Air-to-Air mode, the user can selectively lock on to a target and get

detailed information on the target's heading, altitude, speed, closure rate, and as-

pect angle. The FLIR gives the user an inset view. The viewpoint for the FLIR

is on the undercarriage of the fuselage, and the user can change the view direction

interactively or cycle through a series of predefined points. Capt Erichsen was also

responsible for implementing our solution to the problem of converting from a flat

earth coordinates system to the WGS-84 coordinate system.

This thesis outlined the addition of weapons into the Virtual Cockpit, and the

steps I took to improve both the simulation's fidelity and frame rate. The Weapon

Controller object allows the Virtual Cockpit to carry a wide range of munitions,

and the Head-Ul. Display provides the user with the information needed to deliver

weapons on target. The integration of the weapons with the RADAR and FLIR

allows delivery of air-to-air missiles and air-to-ground, precision guided munitions.

The Virtual Cockpit's frame rate with 500 objects in the simulation stays within the

10 to 15 frames per second, and does work well.

Upgrading the Virtual Cockpit's network interface to work with DIS v2.0 was

the task of Mr Steve Sheasby. Moving to the DIS v2.0 protocol required not only

reformatting the information being sent but also adding the ability to handle multiple

objects generating Entity State PDUs from the same simulation. The weapons also

required the ability to broadcast Fire and Detonation PDUs.

64



The Virtual Cockpit participated in the SIGGRAPH '93 Tomorrow's Reality

Gallery (TRG) exhibition (24:214). During the five day exhibition approximately

600 people had the opportunity to fly the Virtual Cockpit. Kaiser Electro-Optics

loaned AFIT a 1280x1024 monochrome head-mounted display that allowed partic-

ipants to fly in a Virtual Environment and participate in a Distributed Interactive

Simulation. The Virtual Cockpit was able to interact with the Naval Postgraduate

School's simulator, NPSNET, over both a local area network and a T-1 commu-

nications line. The terrain database used during TRG was created by the Naval

Postgraduate School and populated with a lake, a mountain, a canyon, an airport,

and an industrial park. This terrain was dubbed Neyland, in honor of our sponsor

at ARPA, Lt Col Dave Neyland. During the exhibition the Virtual Cockpit proved

itself in both its ground attack and air superiority roles. The Virtual Cockpit rou-

tinely destroyed the industrial production capability of Neyland through the use of

daylight precision bombing. Captain Matt Erichsen is the first pilot to become an

ace flying the Virtual Cockpit. During the TRG exhibition he was able to destroy

over 15 NPSNET aircraft simulators in less than an hour.

Due to hardware configuration problems, the Virtual Cockpit was unable to

participate in ARPA's Zen Regard exercise in November of 1993. However, after the

exercise I was able to test the Virtual Cockpit against several software systems that

act as exercise observers. The tests conducted were intended to provide independent

verification of our implementation of the DIS v2.0 network protocol and the WGS-84

coordinate system. The preliminary results of these tests indicate that the Virtual

Cockpit is able to send and receive DIS v2.0 PDUs and correctly convert from a

local, flat-earth coordinate system to the WGS-84 coordinate system.

Recommendations

The Virtual Cockpit proves that a flight simulator using Virtual Environment

technology and Distributed Interactive Simulation protocols can be built. The next

65



logical step is to determine the effectiveness of the simulator. Such a study should

be performed by someone knowledgeable in Human Factors, perhaps another AFIT

student as part of a thesis. The research should concentrate on the fidelity of the

simulation and the effectiveness of the user interface. Above all else, the Virtual

Cockpit should not cause the user to develop habit patterns that would be dangerous

in an actual F-15.

The C++ classes developed during the 1993 thesis cycle lay the ground work

for the building of other DIS simulators. ObjectSim provides the basic frame work

in which to build a simulation. The RADAR and Forward Looking Infrared displays

should be used as prototypes of sensor packages. These sensor packages can then be

installed in a multitude of different simulators such as surface to air missile sites or

surveillance satellites. The Weapon Controller can be expanded to handle a wider

range of weapons such as rockets, grenades, and projectiles from 105mm down to

9mm. The new weapon objects are then just new classes based on the weapons

already developed. Building new simulators based on these C++ classes should be

less time consuming, and it should be possible to create a fairly complex simulator

as a term project.

66



Bibliography

1. "Research Directions In Virtual Environments (Special Report)," ACM Com-
puter Graphics, p. 156-173 (August 1992).

2. Alessi, Stephen M. "Fidelity in the Design of Instructional Simulations," Jour-
nal of Computer Based Instruction, Volume 1S:p. 40-46 (Spring 1988).

3. Alighieri, Dante. The Inferno. New York: The New American Library of World
Literature, 1954.

4. Blau, Brian, et al. "Networked Virtual Environments," ACM SIGGRAPH Pro-
ceedings, p. 157-160 (1992).

5. Bryson, Steve. "Virtual Reality Hardware," ACM SIGGRAPH Course Notes:
Implementing Virtual Reality, p. 1.3.1-1.3.26 (1993).

6. Chung, J.C., et al. "Exploring Virtual Worlds with Head Mounted Displays."
Visualization and Display Technologies. pp. 42-52. 1989. SPIE Vol. 1083.

7. Clausewitz, Carl Von. On War. Princeton, NJ: Princeton University Press,
1989.

8. Cleave, William Van. The US War Machine. New York: Crown Publishers,
1983.

9. Department of the Air Force, Headquarters US Air Force, Washington DC
20330-5000. AFM 51-37(C3) Flying Training - INSTRUMENT FLYING, 1979.

10. Duffey, John G. and others. A Digital Simulation Model for Evaluating System
Effectiveness of Infrared Air to Air Missiles. Technical Report DTIC Report
AD-523-236, Air Force Weapons Laboratory, 1972.

11. Erichsen, Matthew N. Weapon System Sensor Integration for a DIS-Compatible
Virtual Cockpit. MS thesis, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, AFIT/GCS/ENG/93D-7, December 1993.

12. Foley, James D., et al. Computer Graphics Principles And Practice (Second
Edition). Reading, Massachusetts: Addison-Wesley Publishing Company, 1990.

13. Hanson, Caroline L. "Fiber Optic Helmet Mounted Display: A Cost Effec-
tive Approach to Full Visual Flight Simulation." Proceedings of the Interser-
vice/Industry Training Systems Conference (5th). 1983.

14. Institute for Simulation and Training, 12424 Research Parkway, Suite 300, Or-
lando FL 32826. Proposed IEEE Standard Draft Standard for Information Tech-
nology - Protocols for Distributed Interactive Simulation Applications Version
2.0 Second Draft, March 1993. Contract Number N61339-91-C-0091.

15. Jane. Jane's Air Launched Weapons. Alexandria, VA: Jane's Information
Group, 1989.

67



16. Kunz, Andrea. A Virtual Environment For Satellite Modeling And Orbital Anal-
ysis in a Distributed Interactive Simulation. MS thesis, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, AFIT/GCS/ENG/93D-14, De-
cember 1993.

17. Manno, M. Morris. Digital Logic and Computer Design. Englewood Cliffs, New
Jersey: Prentice Hall, 1979.

18. McCarty, Dean. Rendering an Out the Window View for the AFIT Virtual
Cockpit. MS thesis, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, AFIT/GCS/ENG/93M-04, May 1993.

19. McLendon, Patricia. IRIS Performer Programming Guide. Silicon Graphics
Inc., Mountain View, California, 1992.

20. Miller, Duncan C. "Long Haul Networking of Simulators." Proceedings of the
10th Interservice/Industry Training Systems Conference. 1988.

21. Mongold, C. H. F-15 Aerodynamics Report, Revision. Technical Report DTIC
Report AD-B140-163, McDonnell Aircraft Co., St Louis MO, 1982.

22. Neyland, David. The Zealous Pursuit Ezercise: Overview And Lessons Learned.
Defense Advanced Research Projects Agency, 1993.

23. Orlansky, Jesse and Joseph String. "Reaping the Benefits of Flight Simulation."
Computer Image Generation, edited by Bruce J. Schachter. pp.191-202. New
York: John Wiley and Sons, 1983.

24. Pratt, David. "NPSNET and AFIT HOTAS," ACM SIGGRAPH Visual Pro-
ceedings, p. 214-215 (August 1993).

25. Rolfe, J.M. and K.J. Staples, editors. Flight Simulatinn. New York, New York:
Cambridge University Press, 1986.

26. Rumbaugh, James and others. Object-Oriented Modeling and Design. Engle-
wood Cliffs, New Jersey: Prentice Hall, 1991.

27. Scarborough, E. and others. "A Prototype Visual and Audio Display," Pres-
ence, Volume I Number 4:pp. 459-467 (1992).

28. Schaeffer, Allen. "Performer: Frequently Asked Questions." Usenet post,
September 1993.

29. Sheasby, Steven M. Management Of SIMNET And DIS Entities In Synthetic
Environments. MS thesis, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, AFIT/GCS/ENG/92D-16, December 1992.

30. Snyder, Mark. OBJECTSIM a Reusable DIS Simulation Framework. MS
thesis, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
AFIT/GCS/ENG/93D-20, December 1993.

31. Soltz, Brian. Sound Generation Facility. Air Force Institute of Technology,
School of Engineering, Wright-Patterson AFB, Ohio, 1992.

68



32. Sutherland, Ivan. "The Ultimate Display." Proceedings of the IFIP Congress.
p. 506-508. 1965.

33. Sweetman, Bill and others. The Great Book of Modern Warplanes. New York:
Portland House, 1987.

34. Zyda, Michael J. and others. "Flight Simulators for Under $100,000," IEEEComputer Graphics and Applications, p. 8:19-27 (January 1988).

69



Vita

Capt William E. Gerhard Jr. was born in Rockledge, Florida on March 29,1966.

He graduated from Plant City High School in 1984. Capt Gerhard attended the

United States Air Force Academy from July 1984 to June 1988, and graduated with

a Bachelor of Science in Computer Science. His first assignment was to the 7th

Communications Group, Pentagon, as a Communications Computer Officer. While

at the Pentagon, his duties included providing computer support for the Office of

the Under Secretary of Defense for Acquisition. From May 1992 to December 1993,

he attended the Air Force Institute of Technology, and received the degree of Master

of Science in Computer Science. Capt Gerhard is currently assigned to the Arnold

Engineering Development Center, Arnold Air Force Base, Tullahoma, TN. He and

his wife, Nancy Sue Gerhard, are expecting their first child in January of 1994.

Permanent address: PO BOX 416
Brandon, Florida 33549

70



|m i iiForm Approved

REPORT DOCUMENTATION PAGE 1 No. o0001-o0U

I atIrw-"~ wl2 rN#'lata mod" *r4 .0ffl)W"4' 7~ C; 1#Of 3ftormation ,emfi commenrs reaft~tu *wrow OW estiaeU v on, Ivorl wnctR a~t 31 f
?-II(IMCf -11 -'Ui~ro. MtC Gq Win U9ftaoon tot trtWoq ~innotc. 0 at m,.' roN Vt'qo~t'O1al~ .obwre se- ,,,es ~ a. 0aftta trm,nat~ou t0watons auto 4qaO&IL is .*#S
:tv's .ftqr.;,.. J~.92 A 22232-4302,4.4 to the 2l

4
' .4t00te-o t 4041u dBuawo 314Ofutov Aeo uctP'osn omen 3).at~tt X MalC

1. AGENCY USE ONLY (Leave blenX) 2. REPORT DATE 3. REPORT TYPE ANDO DATES COVERED

aDecember 1993 Mater's Thesis
4. TITLi AND SUBTITLE S. FUNDIG NUMBERS

WEAPON SYSTEM INTEGRATION FOR
THE AFIT VIRTUAL COCKPIT

6. AUTHOR(S)

William E. Gerhard Jr, Capt, USAF

7. ?E.%FCRMING ORGANIZATION 14AME(S) AND AODRESS(ES) 8. PERFORMING ORGANIZATICN
REPORT NLMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFJT/GCS/ENG/93D-10

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 710. SPONSORING MONITORING
ARPA/ASTO! AGENCY REPORT NUMBER

3701 North Fairfax Drive
Arlington, Va 22203

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. OISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The Air Force Institute of Technology is continuing research in the Virtual Cockpit. The Virtual Cockpit makes
use of high performance graphics workstations, Virtual Environment technology, and Distributed Interactive
Simulation network protocols to create a flight simulator based on the capabilities of the McDonnell Douglas
F-15E Strike Eagle. The work presented in this these focuses on the design and implementation issues for
integrating a weapons delivery capability. Weapons simulated include: RADAR and IR guided air-to-air missiles,
gravity and precision guided bombs, and a 20mm cannon. Virtual Environment displays used include: color
NTSC and monochrome high resolution helmet mounted displays employing a Polhemus Fastrack sensor, and a
display using five separate BARCO projectors simulataneously. The Target graphics system was a four processor,
SGI Onyx workstation with a Reality Engine graphics pipeline. Graphics rendering was accomplished with
an AFIT developed object oriented simulation software package based on the SGI Performer 1.2 application
development environment.

14. SUBJECT TERMS 11 NUMBER OF PAGES

Simulation, Flight Simulators, Distributed Interactive Simulation,I 7P
Synthetic Environments, Head-Up Display, Missile Simulation, Computer Graphics

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
'gSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Ptecred by ANI Sta Z39-18
?9- 02


